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Abstract
The case of small intercentre distance in the D-dimensional two Coulomb
centres problem (Z1eZ2)D (D � 2) is studied by solving the wave equations
using the separations of variables. Asymptotic expansions for the electronic
terms and the quantum defect are obtained. Results obtained are compared
with previous asymptotic and numerical treatments. Correspondence between
energy terms of the three-dimensional system (Z1eZ2)3 and the D-dimensional
system (Z1eZ2)D is found.

PACS numbers: 02.60.Lj, 02.30.Mv, 02.30.Gp, 03.65.Ge

1. Introduction

It was shown by Ehrenfest [1, 2] that the generalization of physical theories to space with an
arbitrary dimension D often resulted in a new and unexpected understanding of the problem
examined. During the past years such an approach received a considerable development and
is widely used in theoretical physics. The 1/D-expansion or size scaling, a new method of
quantum mechanics and quantum field theory, was used in particular to study the properties
of atoms in strong electric and magnetic fields, the three bodies problem, the two Coulomb
centres problem and many other problems [3–5, 7]. A review of this method, its different
variants and its applications to the theory of atoms, molecules and quantum chemistry can be
found in [7].

This work is devoted to the generalization of the results of the asymptotic theory for the
quantum mechanical two Coulomb centre problem Z1eZ2 [8, 9] by inflating the number of
spacial dimension (denoted as the (Z1eZ2)D problem). Separating the Schrödinger equation
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in hyperspheroidal coordinates [10] leads to two coupled confluent Heun equations [11, 12],
the singularities of which are located at ±1 and at infinity. To calculate the energy levels of the
two Coulomb centre system, a two-parameter boundary-eigenvalue problem must be solved.
We solve this problem for the case of small intercentre separations by means of an asymptotic
method that has been proposed in [9] and developed in [11]. The 1/D-expansion of the energy
levels for the (Z1eZ2)D problem was calculated in [6] for the first time. But this expansion
gives poor results for the case of small separations. We have obtained an expansion for the
energy levels, which is convergent not only for small intercentre separations but also large
spatial dimension D. The two-dimensional two centres problem (Z1eZ2)2 at small intercentre
separation has been studied in [13], and the same results are presented in this paper.

The solutions of the Schrödinger equation with two-centre potential are of considerable
interest in various problems of few-body systems. They describe the bound states of light
particles in the field of two heavy particles. Usually such type of systems arises in molecular
physics. However, in the past years other systems were also described by the two-centre
Schrödinger equation; for example, baryons containing heavy quarks (QQq baryons) [14]
and heavy-flavoured hybrid mesons (QQg mesons) are now becoming subjects of extensive
investigation. There is a close connection between the (Z1eZ2)D problem and SU(2) monopole
[15, 16]. The five-dimensional bound system of ‘charge-dion’ with SU(2)—Yang monopole
[17] is also described by equations obtained by the separation of variables of equation (1)
(see below) in hyperspheroidal coordinates. Furthermore, equation (1) is connected to the
well-known Teukolsky equation [18].

The organization of the paper is as follows. In the following section we give an outline of
the general scheme for solving (Z1eZ2)D problem. In section 3, we construct and study the
B-functions. In sections 4 and 5, we have constructed the asymptotic expansions for the radial
Coulomb hyperspheroidal functions and the angular Coulomb hyperspheroidal functions using
the ideas in [9, 11, 19]. In section 6, we obtain asymptotic expansion for the energy levels and
the quantum defect. Finally, we discuss our results in section 7.

2. Formulation of the problem

The Schrödinger equation for the (Z1eZ2)D problem in atomic units (m = e = h̄ = 1) reads(
−1

2
� − Z1

r1
− Z2

r2

)
�(r;R) = E�(r;R), (1)

where r1 and r2 are distances from the electron to charges Z1 and Z2 and R is the intercentre
distance. Introducing the hyperspheroidal coordinate system [10]

x1 = R

2
cosh u cos v,

x2 = R

2
sinh u sin v cos βD−2,

x3 = R

2
sinh u sin v sin βD−2 cos βD−3,

...

xD−1 = R

2
sinh u sin v sin βD−2 . . . sin β2 cos β1,

xD = R

2
sinh u sin v sin βD−2 . . . sin β2 sin β1,

(2)
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where
0 � v < 2π, if D = 2,

0 � v < π, if D > 2,

0 � u < ∞,

β0 = 0, 0 � β1 < 2π,

0 � βk < π, k = 2, 3, . . . ,D − 2,

and writing the wavefunction in the form �(r) = �(D)(v)�(D)(u)
∏D−2

k=1 Fk(βk), we obtain the
equations[

1

sinhD−2 u

∂

∂u
sinhD−2 u

∂

∂u
− mD−2(mD−2 + D − 3)

sinh2 u

+ 2pα cosh u + p2(cosh2 u − 1) − λ

]
�(D) = 0, (3)[

1

sinD−2 v

∂

∂v
sinD−2 v

∂

∂v
− mD−2(mD−2 + D − 3)

sin2 v

+ 2pβ cos v − p2(1 − cos2 v) + λ

]
�(D) = 0, (4)[

∂2

∂β2
1

+ m2
1

]
F1(β1) = 0, (5)[

1

sink−1 βk

∂

∂βk

sink−1 βk

∂

∂βk

− mk−1(mk−1 + k − 2)

sin2 βk

+ mk(mk + k − 1)

]
Fk(βk) = 0, k = 2, 3, . . . , D − 2, (6)

where λ,m1,m2, . . . , mD−2 are the separation constants, and

p = (R/2)(−2E)1/2, α = (Z2 + Z1)(−2E)−1/2, β = (Z2 − Z1)(−2E)−1/2.

(7)

We only consider bound states with E < 0.
In particular, for D = 2 and m0 = 0, the following ordinary differential equations for the

functions �(2)(u) and �(2)(v) are obtained:[
d2

du2
+ 2pα cosh u − p2(cosh2 u − 1) − λ

]
�(2)(u) = 0, (8)[

d2

dv2
+ 2pβ cos v − p2(1 − cos2 v) + λ

]
�(2)(v) = 0. (9)

The physically correct solutions �(2)(u),�(2)(v) of equations (8) and (9) must satisfy the
conditions

�(2)(u + 2π i) = �(2)(u), |�(2)(0)| < ∞, |�(2)(u)| u→∞−→ 0, (10)

�(2)(v + 2π) = �(2)(v). (11)

It is expedient to introduce new variables ξ, η for the case D � 3 by

ξ = cosh u, 1 � ξ < ∞, η = cos v, −1 � η � 1,
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so that the radial equation (3) and the angular equation (4) are transformed into[
1

(ξ 2 − 1)
D−3

2

d

dξ
(ξ 2 − 1)

D−1
2

d

dξ
− λ − p2(ξ 2 − 1) + 2pαξ − m(m + D − 3)

ξ 2 − 1

]
�(D) = 0,

(12)[
1

(1 − η2)
D−3

2

d

dη
(1 − η2)

D−1
2

d

dη
+ λ − p2(1 − η2) + 2pβη − m(m + D − 3)

1 − η2

]
�(D) = 0,

(13)

where

m = mD−2.

The functions �(ξ) and �(η) obey the boundary conditions

|�(D)(1)| < ∞, |�(D)(ξ)| ξ→∞−→ 0, (14)

|�(D)(±1)| < ∞. (15)

Both equations (12) and (13) are singly confluent Heun equations [11, 12].
We introduce the radial Coulomb hyperspheroidal functions (RCHF) �

(D)
mk (p, α; ξ)

(D � 3) as solutions of the Sturm–Liouville problem described by (12) and (14) on the
ray ξ ∈ [1,∞), where k is the number of zeros inside [1,∞). In the case of D = 2, instead
of the RCHF, we introduce the radial Coulomb elliptic functions (RCEF) �

(2)
k (p, α; u) as

the solution of the boundary problems (8) and (10), where now k is the number of zeros
inside [0,∞).

Next, we introduce the angular Coulomb hyperspheroidal functions (ACHF) �(D)
mq (p, β; η)

(D � 3) as solutions of the Sturm–Liouville problem of (13) and (15) on the interval
η ∈ [−1, 1], where q is the number of zeros inside [−1, 1]. In the case of D = 2 instead
of the ACHF, we introduce the angular Coulomb elliptic functions (ACEF) �

(2)
l (p, β; v) as

solutions of (9) and (11), where l determines the number of zeros. In the case of equal charges
(Z1 = Z2), l is the number of zeros in the interval [0, π). In the case of Z1 �= Z2, the number
of zeros of the ACEF in the interval [0, π) is equal to 2l.

It can be seen that in the limiting case p → 0 the angular equation (13) can be converted
to the following form:[

1

(1 − z2)
D−3

2

d

dz
(1 − z2)

D−1
2

d

dz
+ n(n + D − 2) − m(m + D − 3)

1 − z2

]
B = 0. (16)

Solutions of equation (16) bounded at the singularities z = ±1 are denoted by B(D),m
n (z), and

in this work we name them the B-functions. The B-functions are expressible in terms of the
hypergeometric function, and they will be considered in the following section.

The situation is more complicated for the case of the radial equation (12). In the chosen
scale, this equation appears to be a perturbed equation of (16). Actually the proper radial scale
in the united atom limit (p → 0) is pξ . The principal scheme of further calculations is the
following:

• the use of two different scales;
• perturbation calculations of the solutions;
• the matching of the solutions obtained on different subintervals.

As a final step, the dispersive equation for the eigenvalues of the energy is solved by means
of successive approximations. All calculations are rather cumbersome and can be carried out
with a symbolic computation system like Maple4.
4 Maple Waterloo Software, Inc. See http://www.maplesoft.com

http://www.maplesoft.com
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The existence of two scales leads to the fact that the expansions for the separation constant
and for the energy levels have more complicated structures than simple power series.

3. The B-functions

The B-functions are solutions of differential equation (16) where n and z are unrestricted.
We will restrict ourselves D = 3, 4, 5, . . . and m = 0, 1, 2, . . . in the further deductions. If
D = 3, then equation (16) simplifies to Legendre’s equation [20] and we suppose that

B(3),m
n (z) = P m

n (z), (17)

where P m
n (z) are Legendre functions. For m = 0, equation (16) reduces to Gegenbauer’s

equation [20] and we suppose that

B(D),0
n (z) = const · C

D−2
2

n (z), (18)

where Ca
n(z) are Gegenbauer functions [20]. The differential equation (16) remains unchanged

if m is replaced by −m − D + 3, z by −z, and n by −n − D + 2. Therefore,

B(D),m
n (±z), B(D),−m−D+3

n (±z), B(D),m
−n−D+2(±z), B(D),−m−D+3

−n−D+2 (±z)

are solutions of (16). We follow relation (17) and introduce the B-functions by

B(D),m
n (z) = �(n + m + D − 2)

�(n − m + 1)
(z2 − 1)

3−D
4 P

−m− D−3
2

n+ D−3
2

(z). (19)

Hence, the following relation between the B-functions and Gegenbauer functions is valid:

B(D),m
n (z) = 2−m− D−3

2
�(2m + D − 2)

�
(
m + D−1

2

) (z2 − 1)
m
2 C

m+ D−2
2

n−m (z), (20)

and it is easily seen that condition (18) is fulfilled. Relation (19) leads to the important
symmetry property

B(D),m
−n−D+2(z) = (−1)D−3B(D),m

n (z). (21)

The recurrent formulae for the B-functions may be derived by applying recurrence relations
between the contiguous Legendre functions

(2n + D − 2)zB(D),m
n (z) = (n − m + 1)B(D),m

n+1 (z) + (n + m + D − 3)B(D),m
n−1 (z), (22)

(2n + D − 2)(1 − z2)
d

dz
B(D),m

n (z)

= (m − n − 1)nB(D),m
n+1 (z) + (n + D − 2)(n + m + D − 3)B(D),m

n−1 (z). (23)

By means of the transformation relationship of the hypergeometric function 2F1(a, b; c; x)

[20], expression (19) is expressible in the form

B(D),m
n (z) = (−1)D−32n+ D−1

2 (z + 1)
m
2 −n− D−1

2 (z − 1)−
m
2 − D−3

2

× �(−2n − D + 2)

�(−n − D−3
2 )�(−n − m − D + 3)

× 2F1

(
n +

D − 1

2
, n − m + 1; 2n + D − 1; 2

z + 1

)
+ 2−n− D−3

2 (z + 1)
m
2 +n+ D−3

2 (z − 1)−
m
2 − D−3

2
�(2n + D − 2)

�(n + D−1
2 )�(n − m + 1)

× 2F1

(
−n − D − 3

2
,−n − m − D + 3;−2n − D + 3; 2

z + 1

)
. (24)
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In our applications of the B-functions z = x, where −1 � x � 1. If m+ D−3
2 is an even integer

and D is an odd integer, we see from equation (19) that the values of B(D),m
n (z) on both sides

of the cut are equal, so in this case it is sufficient to take the branch cut along the real axis
from −1 to −∞. In all other cases, B(D),m

n (x − i0) and B(D),m
n (x + i0) are different [f (x ± i0)

means limε→0 f (x ± iε), ε > 0]. In order to avoid ambiguity, it is usual to introduce slightly
modified solutions of (16). These will be denoted by B

(D),m
n (x):

B
(D),m
n (x) = 1

2

[
e−iπ m

2 B(D),m
n (x + i0) + eiπ m

2 B(D),m
n (x − i0)

]
. (25)

With this definition, formulae for the B
(D),m
n (x) corresponding to that for the B(D),m

n (z) (19)
may be obtained as

B
(D),m
n (x) = �(n + m + D − 2)

�(n − m + 1)
(1 − x2)

3−D
4 P

−m− D−3
2

n+ D−3
2

(x), (26)

where P
m
n (x) are Legendre functions on the cut [20]. If n = 0, 1, 2, 3, . . . and n � m,

equation (26) is valid, and the hypergeometric series involved are polynomials of degree n−m

in x and
{
B

(D),m
n (x)

}
is a system of orthogonal polynomials. The orthogonal relationship for

these polynomials reads∫ 1

−1
B

(D),m
n (x)B(D),m

r (x)(1 − x2)
D−3

2 dx = 0, n �= r,∫ 1

−1

[
B

(D),m
n (x)

]2
(1 − x2)

D−3
2 dx = (n + m + D − 3)!

(n − m)!
(
n + D−2

2

) .

(27)

4. The asymptotic expansions for the ACHF, ACEF and for the separation constants

Setting p = 0 in equation (13), we obtain the B-functions equation (16). This suggests to
present an expansion for the eigenfunction �(D)(η) of boundary problem (13) and (15) in the
form

�(D)(η) =
∞∑

n=m−l

gnB
(D),m
l+n (η). (28)

The coefficients gn satisfy the system of recurrent equations

p2
n
n+1gn+2 + 2pβ
ngn+1

+ [λ(η) − (l + n)(l + n + D − 2) − p2 + p2(
n−1�n + 
n�n+1)]gn

+ 2pβ�ngn−1 + p2�n�n−1gn−2 = 0, gm−l−1 = 0, gm−l−2 = 0, (29)

where


n = l + n + m + D − 2

2l + 2n + D
, �n = l + n − m

2n + 2l + D − 4
. (30)

The coefficients 
n and �n are symmetrical, corresponding to the substitution l → −l−D+2:


n(l) = �−n(−l − D + 2), �n(l) = 
−n(−l − D + 2) (31)

that leads to the symmetry of gn

gn(l) = g−n(−l − D + 2), n � m − l, (32)

and to the invariance of the separation constant

λ(η)(l) = λ(η)(−l − D + 2). (33)
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The asymptotic procedure of getting the succeeding coefficients gn in expansion (28) and
separation constant λ(η) is based on the formal series

gn = p|n|
∞∑

j=0

[gn]2jp
2j , g0 ≡ 1, λ(η) =

∞∑
j=0

[λ]2jp
2j . (34)

Firstly, expansions (34) are inserted into recurrent equations (29). Then we equate coefficients
of alike powers of p. On the first step of the recursive procedure, [λ]0 is obtained. On the next
step the coefficients [g±1]0 are obtained, then [λ]2 and so on. We give some final results

[λ]0 = l(l + D − 2), (35)

[λ]2 = 1 − 
0�1

(
1 +

2β2

l + D−1
2

)
− �0
−1

(
1 − 2β2

l + D−3
2

)
, (36)

[λ]4 = −
0�1
1�2

2(2l + D)

(
1 +

2β2

l + D−1
2

)2

− β2(
l + D−1

2

)2 
0�1
1�2

− β2(2l + D − 2)(
l + D−1

2

)2 �0
−1
0�1 +
2β4(

l + D−1
2

)3 
2
0�

2
1

+
β4(

l + D−3
2

)2 (
l + D−1

2

)2 �0
−1
0�1 + { }l→−l−D+2. (37)

For the sake of brevity, we denote with the brace all terms in (37) that are symmetrical to the
given ones in accordance with the substitution l → −l − D + 2 and the property (31).

Instead of expansion (28), we can use the expansions of the form

�(D)(η) = e−pη

∞∑
n=m−l

dnB
(D),m
l+n (η),

dn = p|n|
∞∑

j=0

[dn]2jp
2j , d0 ≡ 1,

(38)

where the coefficients dn satisfy the three-term recurrent equation system

2pdn−1
(l + n − m)

(
β + l + n + D−3

2

)
2l + 2n + D − 4

− dn[(l + n)(l + n + D − 2) − λ(η)]

+ 2pdn+1
(l + n + m + D − 2)

(
β − l − n − D−1

2

)
2l + 2n + D

= 0, d−1 = 0. (39)

It is easy to obtain from equation (39) the following limiting ratio:∣∣∣∣dn+1

dn

∣∣∣∣ ∼ p

n
, n → +∞. (40)

Thus, series (38) converges on the interval −1 � η � 1. The successive approximation
procedure leads to an expansion for the eigenvalues λ(η):

λ(η) = l(l + D − 2) + 2p2

(
l + D−3

2

)2
+ l + D−5

2 +
(
m + D−3

2

)2

(2l + D − 4)(2l + D)

+ 2p2β2

(
l + D−3

2

)2
+ l + D−3

2 − 3(m + D−3
2 )2(

l + D−3
2

) (
l + D−1

2

)
(2l + D − 4)(2l + D)

+ O(p4). (41)
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Now, we obtain the asymptotic expansion of the ACEF. The differential equation (9)
belongs to the class of equations with periodic coefficients. In the case of the equal charges
(Z1 = Z2) parameter β is equal to zero, and the angular equation (9) transforms to the Mathieu
equation (see [20] vol 3). From condition (11) follows that these solutions of equation (9) are

�
(2),(+)
l (p, 0; v) = cel

(
v,−p2

4

)
, �

(2),(−)
l (p, 0; v) = sel

(
v,−p2

4

)
, (42)

where cel(ν, q) and sel(ν, q) are the well-known Mathieu’s functions (see again [20] vol 3).
In the case Z1 �= Z2, we introduce the new function �(2)(p, β; v) = e−p cos vW(p, β; v)

and the new variable v = 2ζ . In these terms, the angular equation (9) is transformed to Ince’s
equation [21] [

d2

dζ 2
+ 4p sin(2ζ )

d

dζ
+ 4p(1 + 2β) cos(2ζ ) + 4λ

]
W(p, β; v) = 0. (43)

Formal solutions of problems (43) and (11) are obtainable as trigonometric series

W
(+)
l (p, β; v) =

∞∑
n=0

an cos(2nζ ), (l � 0), (44)

an(l) = p|n−l|
∞∑

j=0

[an(l)]2jp
2j , al(l) = 1, (l � 0),

W
(−)
l (p, β; v) =

∞∑
n=0

bn sin[(2n + 2)ζ ], (l � 1), (45)

bn(l) = p|n−l+1|
∞∑

j=0

[bn(l)]2jp
2j , bl−1(l) = 1, (l � 1).

The eigenfunctions W
(+)
l (p, β; v) and W

(−)
l (p, β; v) correspond to the eigenvalues λ

(+)
l and

λ
(−)
l . The three-term recurrence relation for the coefficients an and bn and the perturbation

procedure for obtaining λ
(±)
l are studied in [13]. The eigenvalues λ

(±)
l and λ(η) are connected

with relation

λ
(±)
l = λ(η)

∣∣∣∣ D = 2

m = 0,
(l � 2). (46)

5. The asymptotic expansions for the RCHF and RCEF

When the values of ξ are finite, the radial equation (12) is like perturbed equation (16). This
suggests to represent an expansion for the solution �(D)

< (ξ), which is finite at ξ = 1, in the
form

�(D)
< (ξ) = e−pξ

∞∑
n=−∞

dn(ν)B(D),m
ν+n (ξ),

d0(ν) ≡ 1, dn(ν) = p|n|
∞∑

j=0

[dn(ν)]2jp
2j .

(47)

The coefficients dn(ν) satisfy the recurrent equations that coincide with relation (39)
by changing l into ν and β into −α. The expansion for the eigenvalues λ(ξ) of boundary
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problems (12) and (14) is equivalent to series (41) after substituting l → ν and β → −α

λ(ξ) = λ(η)

∣∣∣∣ l → ν,

β → −α.
(48)

The convergence of series (47) is determined (and ensured) by the behaviour of ratios
dn+1(ν)B(D),m

ν+n+1(ξ)
/
dn(ν)B(D),m

ν+n (ξ) at large positive n, and dn(ν)B(D),m
ν+n (ξ)

/
dn+1(ν)B(D),m

ν+n+1(ξ)

at large negative n. From the recurrence relations for coefficients dn(ν) and from
equation (22) we obtain∣∣∣∣∣dn+1(ν)B(D),m

ν+n+1(ξ)

dn(ν)B(D),m
ν+n (ξ)

∣∣∣∣∣ ∼ p

n

(
ξ −

√
ξ 2 − 1

)
, n → +∞, (49)

∣∣∣∣∣ dn(ν)B(D),m
ν+n (ξ)

dn+1(ν)B(D),m
ν+n+1(ξ)

∣∣∣∣∣ ∼ p

n
(
ξ −

√
ξ 2 − 1

) , n → −∞. (50)

Thus, series (47) converges in the complex plane cut from +1 to −∞.
Series (48) for the separation constant is invariant under the substitution ν → −ν −D +2.

This leads to the symmetry of the coefficients dn(ν):

d−n(ν) = dn(−ν − D + 2). (51)

From equations (51) and (21), we can see that the solution �(D)
< (ξ) has the symmetry property

�(D)
< (ξ)

∣∣
ν→−ν−D+2 = (−1)D−3�(D)

< (ξ). (52)

Another series is needed in the region of large ξ(ξ = O(p−1)), where the new scale for
the independent variable is introduced:

x = p(ξ + 1), (53)

and the new function

�̃(D)(x) = (ξ + 1)
m+D−3

2

(ξ − 1)
m
2

�(D)(ξ). (54)

Thus, instead of (12) we obtain[
d

dx
x2 d

dx
− x2 + 2αx − τ(τ + 1)

]
�̃(D)(x) +

p

x − 2p

[
2

(
m +

D − 1

2

)
x

d

dx

+

(
τ(τ + 1) − (D − 3)(D − 1)

4
− λ(ξ)

)
x

p

+ 2αx − 2τ(τ + 1)

]
�̃(D)(x) ≡ T̂ �̃(D)(x) + pQ̂�̃(D)(x) = 0, (55)

where τ = ν + D−3
2 .

Here ν is a parameter which will be determined later on. The motivation for introducing
the new variable x and the new function (54) can be clearly seen now: it allows a useful
partitioning of differential operators, such that the operator T̂ , in equation (55), coincides with
the three-dimensional radial Schrödinger operator in spherical coordinates for the Coulomb
field of a united atom with charge Z1 + Z2 and an effective orbital momentum τ . The two
linearly independent solutions of the equation T̂ R(x) = 0 are functions Rτ (x) and R−τ−1(x),
where

Rτ (x) = xτ e−x
1F1(−α + τ + 1; 2τ + 2; 2x). (56)
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Here 1F1(a; c; x) is the regular in the origin solution of the confluent hypergeometric
equation. The recurrence relation for the function Rτ (x) can be obtained either by using
the corresponding relations between the adjacent confluent functions [20], or by using the
well-elaborated techniques of integral transformation [9]. Here we shall give only the final
result

Rτ (x)

x
= Rτ−1(x) +

α

τ(τ + 1)
Rτ (x) +

α2 − (τ + 1)2

(τ + 1)2(2τ + 1)(2τ + 3)
Rτ+1(x), (57)

dRτ (x)

dx
= τRτ−1(x) − α2 − (τ + 1)2

(τ + 1)(2τ + 1)(2τ + 3)
Rτ+1(x). (58)

According to property (52), we shall construct the function �(D)
> (ξ) that is the continuation

of the function �(D)
< (ξ) to large ξ in the form

�(D)
> (ξ) = g(ν)y(1)

ν (ξ) + (−1)D−3g(−ν − D + 2)y
(1)
−ν−D+2(ξ), (59)

y(1)
ν (ξ) = (ξ − 1)

m
2

(ξ + 1)
m+D−3

2

∞∑
n=−∞

hn(ν)Rτ+n(x), (60)

y
(1)
−ν−D+2(ξ) = (ξ − 1)

m
2

(ξ + 1)
m+D−3

2

∞∑
n=−∞

hn(−ν − D + 2)R−τ−1+n(x),

hn(ν) = p|n|
∞∑

j=0

[hn(ν)]2jp
2j , h0(ν) ≡ 1.

(61)

Here g(ν) and g(−ν −D + 2) will be found later by matching expansions (47) and (59). Both
functions (60) and (61) have to satisfy equation (55) separately. The coefficients hn(ν) obey
the three-term recurrence relation

2phn−1

[ (
ν + D−3

2

)2 − α2
]
(ν + n + m + D − 3)(

ν + n + D−3
2

)
(2ν + 2n + D − 4)(2ν + 2n + D − 2)

+ hn

[(
ν + n +

D − 3

2

) (
ν + n +

D − 1

2

)
− λ(ξ)

]
− 2phn+1

(
ν + n +

D − 1

2

)
(ν + n − m + 1) = 0. (62)

From recurrence relations (57) and (62), we can obtain the following limiting ratios:∣∣∣∣hn+1(ν)Rτ+n+1(x)

hn(ν)Rτ+n(x)

∣∣∣∣ ∼ px

2n2
, n → +∞, (63)∣∣∣∣ hn(ν)Rτ+n(x)

hn+1(ν)Rτ+n+1(x)

∣∣∣∣ ∼ 2p

x
, n → −∞. (64)

Thus, series (59) converges whenever |ξ | > 1. The coefficients dn(ν) (47) and hn(ν) (59) are
connected with the relation

hn(ν) = dn(ν)(−2)n

(
α + ν + D−1

2

)
n
(ν + m + D − 2)n

(2ν + D − 1)2n(ν − m + 1)n
, (65)

where (a)n = �(a+n)

�(a)
is the Pochhammer symbol.
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Using relation (24), we can present solution (47) of the radial equation (12) as linear
combinations of further solutions of this equation

�(D)
< (ξ) = y(2)

ν (ξ) + (−1)D−3y
(2)
−ν−D+2(ξ), (66)

where

y(2)
ν (ξ) = e−pξ

(
ξ + 1

ξ − 1

) m+D−3
2

∞∑
n=−∞

dn(ν)2−n−ν− D−3
2

× (ξ + 1)n+ν�(2n + 2ν + D − 2)

�
(
n + ν + D−1

2

)
�(n + ν − m + 1)

× 2F1

(
− n − ν − D − 3

2
,−n − ν − m − D + 3;−2n − 2ν − D + 3; 2

ξ + 1

)
.

(67)

Now, we describe a closed circuit on the complex plane of ξ , making positive loops around
the points ξ = ±1. This leads to ξ − 1 → e2π i(ξ − 1), ξ + 1 → e2π i(ξ + 1), and it can easily
be seen that the effect of this circulation on solutions (67), (60) and (61) of the radial equation
is

y(1)
ν (ξ) → e2π iνy(1)

ν (ξ), y
(1)
−ν−D+2(ξ) → e2π i(−ν−D+2)y

(1)
−ν−D+2(ξ), (68)

y(2)
ν (ξ) → e2π iνy(2)

ν (ξ), y
(2)
−ν−D+2(ξ) → e2π i(−ν−D+2)y

(2)
−ν−D+2(ξ). (69)

Since y(1)
ν (ξ), y(2)

ν (ξ), y
(1)
−ν−D+2(ξ) and y

(2)
−ν−D+2(ξ) are solutions of an ordinary differential

equation of the second order, relations (68) and (69) imply that

y(2)
ν (ξ) = g(ν)y(1)

ν (ξ), y
(2)
−ν−D+2(ξ) = g(−ν − D + 2)y

(1)
−ν−D+2(ξ). (70)

The value ν is called the characteristic exponent, and the solutions y(1)
ν (ξ), y(2)

ν (ξ) are called
Floquet solutions [11, 19]. The characteristic exponent ν is a function of the parameters of
the radial equation.

The constant of proportionality g(ν) may be evaluated by expanding the hypergeometric
series representation y(2)

ν (ξ) and the confluent hypergeometric representation for y(1)
ν (ξ) and

comparing alike terms

g(ν) = epp−ν−j− D−3
2

2j+ν+ D−3
2 �

(
j + ν + D−2

2

)
√

π�(1 + j + ν − m)
S(ν), (71)

where

S(ν) =
[ ∞∑

k=0

dj+k(ν)
22k

(
j + ν + D−2

2

)
k

(1 + j + ν − m)k

×
k∑

l=0

(−j − k − ν − D−3
2

)
l

(
m + D−3

2

)
k−l

(−j − k − ν − m − D + 3)l

(−2j − 2k − 2ν − D + 3)l l!(k − l)!

]

×
[ ∞∑

k=0

hj−k(ν)
2k

( − α + j − k + ν + D−1
2

)
k

(2ν + 2j − 2k + D − 1)kk!

]−1

. (72)

In formula (71), j is an arbitrary integer and g(ν) is independent of j . Here we shall give only
the final result for the ratio S(−ν − D + 2)/S(ν):
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S(−ν − D + 2)

S(ν)
= 1 − 4p2 2ν + D − 2

(2ν + D − 4)2(2ν + D)2

×
[
α2

(
1 − 3

(
m + D−3

2

)2 [
8
(
ν + D−3

2

) (
ν + D−1

2

) − 3
]

4
(
ν + D−3

2

)2(
ν + D−1

2

)2

)

+

(
m +

D − 3

2

)2

− 1

4

]
+ O(p4). (73)

When α and τ have arbitrary values, the solution �(D)
> (ξ) in the limit x → ∞ has the

form of a linear combination of the two exponents, one decreasing and the other increasing.
Declaring the coefficient in front of the increasing exponent to be zero, we obtain the dispersive
equation that connects the values of the parameters α, τ and p:

tan(πα) = tan π

(
ν +

D − 3

2

)
1 − ε

1 + ε
, (74)

where

ε =
(p

4

)2ν+D−2 �
(
α + ν + D−1

2

)
(−1)mπ2�(ν + m + D − 2)

�
(
α − ν − D−3

2

)
cos2

[
π

(
ν + D−3

2

)] (
ν + D−2

2

)2

× �(ν − m + 1)

�4
(
ν + D−2

2

)
�2

(
ν + D−1

2

) sin(πν)

sin
[
π

(
ν + D−3

2

)] S(−ν − D + 2)

S(ν)
. (75)

In concluding this section, we show the scheme of calculations the asymptotic expansions
for the RCEF. Transforming the radial equation (8) into the algebraic form by writing
ξ = cosh u, we obtain[

(ξ 2 − 1)
d2

dξ 2
+ ξ

d

dξ
− p2(ξ 2 − 1) + 2pαξ − λ

]
�(2)(ξ) = 0. (76)

Equation (76) is a particular case of the confluent Heun equation [11, 12]. When the values of
ξ are finite, the radial equation (76) is like a perturbed equation for the Chebyshev polynomial
of the first kind Tn(ξ) (see [20], vol 2). We represent the solution �(2)

< (ξ) which is finite at
ξ = 1 by formal series

�(2)
< (ξ) = e−pξ

∞∑
n=−∞

dnTν+n(ξ). (77)

The solution �(2)
< (ξ) and the series for the separation constant are invariant to the substitution

ν → −ν. According to the symmetry ν → −ν, we shall construct the function �(2)
> (ξ), that

is the continuation of the function �(2)
< (ξ) to large ξ , in the form

�(2)
> (ξ) =

√
ξ + 1

[
g(ν)

∞∑
n=−∞

hn(ν)Rν− 1
2 +n(x) + g(−ν)

∞∑
n=−∞

hn(−ν)R−ν− 1
2 +n(x)

]
, (78)

where g(ν) and g(−ν) are matching constants. The dispersive equation, that connects the
values of the parameters α, ν, and p, reads

tan π

(
α +

1

2

)
= tan(πν)

1 − ε

1 + ε
, (79)

where

ε = p2ν
�(−2ν + 1)�

(
ν + α + 1

2

)
�(2ν + 1)�

( − ν + α + 1
2

) [
1 − 8α2ν

(4ν2 − 1)2
p2 + O(p4)

]
. (80)
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6. Asymptotic expansions for the electronic terms and the quantum defect

The first step in deriving asymptotic expansions for the energy levels is to obtain the expansion
of the parameter ν in powers of p. The asymptotic expansion for ν can be derived by equating
λ(η) and λ(ξ). From equations (41) and (48) one obtains

ν
(D)
lm = l + [ν]2p

2 + [ν]4p
4 + [ν]6p

6 + O(p8). (81)

Here

[ν]2 = α2sA
(D)
lm ,

[ν]4 = α2s
(
α2

[
sB

(D)
lm + C

(D)
lm

]
+ D

(D)
lm

)
,

[ν]6 = α2s
(
α4

[
s2E

(D)
lm + sF

(D)
lm + G

(D)
lm

]
+ α2

[
sH

(D)
lm + I

(D)
lm

]
+ J

(D)
lm

)
,

where s = Z1Z2
(Z1+Z2)2 . The coefficients A

(D)
lm ,B

(D)
lm ,C

(D)
lm and D

(D)
lm are connected with the

coefficients Alm, Blm, Clm,5 and Dlm from [9] by the following relations:

A
(D)
lm = Alm

∣∣∣∣∣ l → l + D−3
2

m → m + D−3
2 ,

B
(D)
lm = Blm

∣∣∣∣∣ l → l + D−3
2

m → m + D−3
2 ,

C
(D)
lm = Clm

∣∣∣∣∣ l → l + D−3
2

m → m + D−3
2 ,

D
(D)
lm = Dlm

∣∣∣∣∣ l → l + D−3
2

m → m + D−3
2 .

The other coefficients have rather cumbersome forms and they are not presented here.
Inserting expression (81) into dispersion equation (74) and solving this equation by

successive approximations, we obtain the following asymptotic expression for the energy
terms:

E
(D)
nlm = − Z2

2n2

[
1 − s(ZR)2

2n
A

(D)
lm +

s(ZR)4

32n3
[E]4 +

s(ZR)6

64n5
[E]6 + o(ZR)6

]
, (82)

where n = n + D−3
2 , Z = Z1 + Z2, and

[E]4 = ns
(
6
[
A

(D)
lm

]2 − 4nB
(D)
lm

) − 4D
(D)
lm − 4n2C

(D)
lm ,

[E]6 = −4s2n2
[
A

(D)
lm

]3
+ 6sn3

(
C

(D)
lm + sB

(D)
lm

)
A

(D)
lm + 10snA

(D)
lm D

(D)
lm

− 2n4
(
G

(D)
lm + sF

(D)
lm

) − n2
(
2I

(D)
lm − Z2s2 + 2sH

(D)
lm

) − 2J
(D)
lm .

The additional supposition has been made at this step that s is not large.
We define the quantum defect �

(D)
nlm for the (Z1eZ2)D system by the following relation:

E
(D)
nlm = − Z2

2
(
n + �

(D)
nlm + D−3

2

) . (83)

Expansion for the quantum defect �
(D)
nlm can be found from the expansion of the energy E

(D)
nlm

�
(D)
nlm = s(ZR)2

4
A

(D)
lm +

s(ZR)4

16
[D]4 +

s(ZR)6

64
[D]6 + o(ZR)6, (84)

5 There is a misprint in the coefficient Clm from the original article [9]. The correct form of the coefficient Clm is

Clm = Alm

2l + 1

(
(2l + 1)3

8
A2

lm − Alm

2
− 18m2(4m2 − 1)(2l + 1)

l2(l + 1)2(2l − 1)2(2l + 3)2

)
− Blm

2
.
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where

[D]4 = sB
(D)
lm + C

(D)
lm +

1

n2
D

(D)
lm ,

[D]6 = G
(D)
lm + sF

(D)
lm +

1

2n2

(
2I

(D)
lm + 2sH

(D)
lm − Z2s2) − 2s

n3
A

(D)
lm D

(D)
lm +

J
(D)
lm

n4
.

Solving dispersive equation (74), one can see that expansions (82) and (84) contain only even
powers of R up to the power 2l + D − 1. The next terms are connected with ε in equation (74)
and include logarithms. It is possible to connect the existence of these terms with the fact that
the wavefunction in the vicinity of both nuclei includes the negative and positive powers of
the variables.

In the case of D = 3 and arbitrary n, l,m these terms have been found in [9]. The fact,
that they cannot be calculated for D = 2, has been mentioned in [13]. If we try to compute
the logarithmic terms for the most general case (D, n, l, and m are arbitrary), we can easily
see that these terms can be obtained for odd values of D only and they have complicated
forms. This clarifies the previous statement. Moreover, it is important that the higher a space
dimension is, the weaker the influence of the logarithmic terms is on the energy of the system
(Z1eZ2)D . It can be seen in [13] that the logarithmic terms of the united-atom expansion for
the energy levels are the most significant for the case D = 2 and l = 0.

By going deeper into the details while solving the dispersive equation (74), one
can also obtain the exact solution: the D-dimensional one-centre Coulomb functions in
hypersphseroidal coordinates.

We have calculated one additional term in the expansion for the characteristic exponent ν

for the case D = 3 and l = m = 0:

ν
(3)
00 = 8

3
α2sp2 +

16

135
α4s(9 − 38s)p4

+
16α2s

42 525
(α4[+78 880s2 + 2160s − 288] + α2[−2520s + 630] + 63)p6

− 32sα2

13 395 375
(α6[68 230 064s3 − 17 236 464s2 + 395 262s − 33 225]

+ α4[690 480s2 − 350 280s + 44 415]

+ α2[63 504s − 15 750] − 165)p8 + O(p10). (85)

Up to now only the two first terms in expansion (85) have been calculated [9, 22]. Inserting
expansion (85) into dispersion equation (74) and solving it by successive approximations
procedure, we obtain the following asymptotic expressions for the energy E

(3)
n00 for the case of

S states and D = 3:

E
(3)
n00 = − Z2

2n2
[1 + E1 + E2] , (86)

where

E1 = − 4s

3n
(ZR)2 +

4s

3n
(ZR)3 +

4s

5n

[
s

(
5

3n
+

19

27

)
− 1

]
(ZR)4

+
16s

9n

[
s

(
ln

2ZR

n
+ ψ(n + 1) + 2γ − 2

n
− 139

60

)
+

1

48n2
+

43

240

]
(ZR)5 − 16s2

9n
(ZR)6 ln

2ZR

n
,
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Table 1. Values of ν
(3)
ml at R → 0 for Z1 = Z2 = 1 and α = √

2; E = −1.

R (ν
(3)
00 )a (ν

(3)
00 )b (ν

(3)
01 )a (ν

(3)
01 )c

0.025 0.000 416 661 0.000 416 661 0.999 917 0.999 917
0.05 0.001 666 58 0.001 666 58 0.999 667 0.999 667
0.10 0.006 665 67 0.006 665 67 0.998 665 0.998 665
0.20 0.026 6741 0.026 6741 0.994 641 0.994 641
0.30 0.060 240 0.060 234 0.987 868 0.987 868
0.40 0.108 375 0.108 268 0.978 242 0.978 243
0.50 0.174 353 0.173 253 0.965 602 0.965 608
0.60 0.269 069 0.260 344 0.949 715 0.949 742

a Values for ν
(3)
ml obtained by numerical solutions in [22].

b Values for ν
(3)
00 obtained by using expansion (85).

c Values for ν
(3)
01 obtained by using expansion (81).

E2 = 16s

9n

[
−s

(
ψ(n + 1) +

1

2n
+ 2γ +

1

n

(
19

30
s − 53

20

)
+

1

n2

(
2

3
s − 1

60

)
+

493

945
s − 1801

840

)
− 1

2400n4
− 1

40n2
− 773

16 800

]
(ZR)6 +

32s3

27n
(ZR)7 ln2 R

− s2

170 100n3

[(
−253 680

s
+ 1 061 760 − 403 200 ln

2Z

n
− 806 400γ

− 403 200ψ(n + 1)

)
sn2 + 806 400sn − 8400

]
(ZR)7 ln R + O(R7).

Here ψ(n + 1) = d ln �(x+1)

dx

∣∣
x=n

is the logarithmic derivative of the gamma function [20] and
γ = 0.5772 . . . is the Euler constant. The form of the E1 has been obtained in [9].

The asymptotic expansions for the energy levels and the quantum defect of the system
(Z1eZ2)2 are studied in [13]. Asymptotic expansions (81), (82) and (84) are valid for the case
of D = 2 (m = 0) when l � 4.

7. Discussion

We have checked our approximate results with numerical solutions. In table 1, the comparison
of our results for values ν

(3)
ml (81), (85) with those of the previous asymptotic and numerical

treatments [22] shows that, as expected, the inclusion of additional terms in the asymptotic
expansions for ν

(3)
ml improves the agreement between asymptotic and numerical results. It can

be seen from this table that the agreement of the two sets of values for ν
(3)
ml is better for the

smaller R and the larger l values. In table 2, we give comparison results obtained from the
asymptotic expansion for the three-dimensional (3D) ground state energy level of H +

2 (86)
and from the numerical solution [23]. It can be seen from this table that taking into account
the coefficient E2 makes the agreement between the asymptotic and numerical results worse.
This fact is due to the divergence of the series for the energy levels. The results are better for
larger n.

From the asymptotic expansion for the energy E
(D)
nlm (82), it is easily seen that the series

for energy converges at small R and large D. We have compared high energy levels of the
two-dimensional (2D) H +

2 with high energy levels of the 3D H +
2 . In table 3, we can see how

the high energy levels of the 2D H +
2 approach the corresponding energy levels of the 3D H +

2 .



1806 D I Bondar et al

Table 2. Energy for the ground state of 3D H +
2

R (−E
(3)
100)

a 2[1 + E1 ] 2[1 + E1 + E2 ]

0.05 1.993 9765 1.993 9765 1.993 9765
0.10 1.978 2421 1.978 236 1.978 244
0.20 1.928 6202 1.928 37 1.928 89
0.30 1.866 7039 1.8649 1.8704
0.40 1.800 7539 1.7943 1.8228
0.50 1.734 9879 1.714 1.818
0.60 1.671 4846 1.60 1.91

a Values for E
(3)
100 obtained by numerical solutions in [23].

Table 3. Comparing high energy levels of 2D H +
2 and 3D H +

2 (R = 0.05).

n l m −E
(3)
nlm −E

(2)
nl

0 0.080 000 230 88
5 4 3 0.079 999 919 19 0.098 765 867 59

4 0.079 999 676 77

0 0.020 000 002 95
10 9 5 0.020 000 000 49 0.022 160 668 83

9 0.019 999 994 99

0 0.008 888 889 133
15 14 7 0.008 888 888 962 0.009 512 485 436

14 0.008 888 888 450

0 0.002 222 222 226
30 29 15 0.002 222 222 223 0.002 298 190 179

29 0.002 222 222 215

This result confirms a well-know fact: the motion of an electron in the Rydberg state becomes
approximately planar. The energy terms E

(D)
nlm of the system (Z1eZ2)D are connected with the

energy terms E
(3)
nlm of Z1eZ2 by the following relation:

E
(D)
nlm = E

(3)
nlm

∣∣∣∣∣∣∣
n → n + D−3

2

l → l + D−3
2

m → m + D−3
2 .

(87)

Identical correspondences also exist for the D-dimensional hydrogen atom and the
D-dimensional helium isoelectronic sequence [24].
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